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Introduction

Collection and examination of avian blood is a routine 
and essential diagnostic tool for the avian clinician. Clini-
cal biochemistry and the haematological examination can 
provide insight into the function and activity of many of an 
avian patient’s body systems including their immune sys-
tem and bone marrow, their response to stressors or dis-
ease and can provide useful prognostic information which 
cannot be determined from a physical examination (Harr, 
2006; Samour, 2006; Campbell, 2015; Jones, 2015). Many 
elements of the examination of blood such as measur-
ing the concentration of salts and enzymes in the serum 
have been automated, however the examination of blood 
smears and determination of differential white blood cell 
counts remains a manual operation and requires an expe-
rienced haematologist to maximize the amount of clinical 
information obtained (Campbell, 2015).

Obtaining the avian white cell differential and count man-
ually is typically performed in two different ways (Dein et 
al., 1994; Walberg, 2001), the first involves the use of spe-

cialized stains such as Natt and Herrick’s stain (Natt and 
Herrick, 1952) or phloxine B (Unopette or Eopette kits) 
(Campbell, 1994), a haemocytometer and a blood smear 
strained with a Romanowsky stain (Campbell, 2015); the 
second involves estimating the white cell count from a 
Romanowsky stained blood smear (Cray and Zaias, 2004; 
Bickford, 2007). The haemocytometer method is the cur-
rent gold standard for performing the white blood cell 
count in avian blood, but is time consuming, dependent 
on the availability of the necessary stains and expertise, 
and is typically performed in clinical pathology labora-
tories and in larger clinics seeing many birds (Walberg, 
2001). The slide method is used as a rapid in-clinic test 
when there is an urgent need for clinical information or 
when a clinical pathology laboratory is not available to 
process blood samples. Regardless of the method, use-
ful examination of an avian haemogram requires expe-
rience and familiarity with avian blood and awareness 
of the species differences in cell morphology (Samour, 
2006; Mitchell and Johns, 2008), reference ranges, com-
mon haematological abnormalities and staining artefacts. 

Construction and Evaluation 
of a Low-cost Haematology
Slide-scanning Robot

A. Chamings
Geelong Centre for Emerging Infectious Diseases
School of Medicine
Deakin University
Geelong. Victoria.  3220

Association of Avian Veterinarians Australasian Committee Ltd. 
Annual Conference Proceedings Auckland New Zealand 2017. 25: 74-81

Abstract

Variation in white cell morphology between avian species and between healthy and diseased individuals, and the 
fact that avian erythrocytes and thrombocytes are nucleated, are the main challenges to using automatic process-
es to study avian blood. However manual evaluation of the avian smear can be time consuming for clinicians and 
technicians and can discourage busy vets and labs from developing their avian haematology skills.

Computer vision has developed considerably over the last three decades and is now employed to perform repeti-
tive tasks such as face recognition at airports, quality control on assembly lines and lane departure monitoring in 
modern cars. Computer vision has also been used to autonomously guide robots such as drones and self-driving 
cars. The repetitiveness of tasks such as blood cell counting in haematology has also seen much research into the 
ability of computers and machine learning algorithms to identify and count blood cell counts from many different 
species with varying degrees of success. Here, the development and testing of a low-cost robot to evaluate stained 
avian blood smears will be described. Preliminary data on how well the robot can identify monolayers within a 
smear and its ability to be ‘trained’ to identify blood cells in healthy pigeon blood smears will also be discussed.



www.aavac.com.au© 75

In human and other mammalian species, the process 
of performing the WBC count and differential has been 
largely automated (Harvey, 2012). This has benefited di-
agnostics as it makes it cheaper and quicker to process 
mammalian blood and get results back to the treating cli-
nician. Automated methods can process larger number of 
cells quickly to obtain more accurate and reliable blood 
cell counts (Riley and Idowu, 2003). It also means the 
haematologist can spend more time on evaluating cell 
morphology and providing their professional interpreta-
tion of the smear rather than counting cells. Additionally, 
automation has significantly benefited research as it has 
enabled the processing of large numbers of mammalian 
blood samples in studies to understand haematological 
responses to many different diseases and interventions 
(Macey, 2007).

Automation of blood cell counting is most commonly 
achieved with an impedance (Coulter) cell counter or a 
flow cytometer (Harvey, 2012). An impedance counter 
enumerates cells in an electrically conductive fluid by de-
tecting changes in the resistance of the fluid as cells pass 
a sensor. The basic principle of flow cytometry is to dilute 
the blood sample to allow individual cells to be streamed 
past a laser beam and photodiodes (Macey, 2007). The 
flow cytometer can count the cells as they pass through 
the laser beam. In addition, the amount of forward scat-
ter and side scatter of the laser is detected by the sensors 
and these values used to identify cell types (Riley and Id-
owu, 2003). Different fluorescent dyes or fluorescent-la-
belled antibodies can be added to the cells, and this flu-
orescence detected as a labelled cell passes through the 
laser beam. This adds further discriminatory ability to the 
flow cytometer (Riley and Idowu, 2003; Abcam, 2017).

Several studies have attempted to adapt flow cytometry 
to avian blood and many diagnostic laboratories can per-
form a total avian WBC count using flow cytometers such 
as the Cell-Dyn 3500 (Abbot Diagnostics, Santa Clara, Cal-
ifornia) in several avian species. However pathological 
changes and species differences in blood cell morphology 
preclude flow cytometry from being used universally for 
all avian species or disease conditions (Lilliehöök et al., 
2004; Samour, 2006). 

The major difference between mammalian and avian 
blood which complicates the use of impedance count-
ers and flow cytometry with avian blood is that avian 
red blood cells (RBCs) and thrombocytes are nucleated 
(Moritomo et al., 2002). Prior to flow cytometry or imped-
ance counting, mammalian blood is treated to lyse frag-
ile non-nucleated red blood cells and platelets, leaving 
leucocytes to be counted (McCarthy, 2007). In contrast, 
the cell membranes of avian RBCs and thrombocytes are 
resilient and cannot be differentially lysed from white 
blood cells (WBC) (Seliger et al., 2012). This challenge can 
be partially overcome by using fluorescent dyes not able 
to be taken up by red cells (Moritomo, et al., 2002). This 
allows a flow cytometer to specifically count the WBCs 

and thrombocytes, but does not allow certain popula-
tions to be differentiated from each other. Lymphocytes 
and thrombocytes have similar forward and side scatter 
profiles as do heterophils and eosinophils (Moritomo, et 
al., 2002; Lilliehöök, et al., 2004). One study in chickens 
used specific anti-chicken fluorescent labelled antibodies 
to identify the lymphocytes from the thrombocytes (Seli-
ger, et al., 2012) but still could not reliably distinguish the 
subpopulations of granulocytes. This technique showed 
promise as a method to almost completely automate the 
differential count in chickens, however it is unlikely that 
leucocyte specific fluorescent antibodies will become 
available for the wide range of avian species seen in avian 
practice today.

A recent study approached the challenge of automating 
the avian white cell differential count using a digital slide 
scanner and computer vision software (Beaufrère et al., 
2013). This method showed promise although it did not 
produce counts in agreement with manual methods. 
Computer vision is increasingly used in medical diagnosis 
and has been experimented with to identify white blood 
cells in human blood smears and to detect malarial para-
sites in blood (Cuevas et al., 2013; Das et al., 2015). Com-
mercial white cell counters are also now available which 
employ computer vision to count 100-200 human white 
cells per smear (MEDICA EasyCell®, Sysmex Corporation, 
USA). Given these developments, it was decided to revisit 
this technology in the context of avian blood smear ex-
amination.

At the time of undertaking several research projects on 
avian blood, our laboratory did not have ready access 
to a slide scanner capable of evaluating blood smears, 
and was unlikely to obtain one in the near future. The 
decision was made to therefore try and make a scanner 
adapting some of the techniques used to make 3D print-
ers and an old microscope. The aim of this study was to 
first determine if a low-cost slide scanning robot could be 
made from inexpensive consumer grade electronic com-
ponents. The second aim was to test whether this robot 
could be ‘taught’ how to; 1) find the monolayer region 
of an avian blood smear; and 2) identify individual blood 
cells. The preliminary findings of this work are presented 
here.

Materials and Methods

Robot construction and components

The slide scanning robot was assembled around an old 
Olympus CH-2 binocular microscope (Olympus, Notting 
Hill, NSW) which had been taken out of service due to a 
broken focus control and faulty light circuit. Stage move-
ment and focus controls were connected to three Nema-
11 stepper motors via gears and shaft couplers purchased 
from several 3D printer suppliers and hobby robotic 
stores online. The motors were controlled via 5V motor 
controller circuits connected to a Raspberry Pi Model 2B 
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single board computer (Raspberry Pi Foundation, Unit-
ed Kingdom). A 5-megapixel (MP) Raspberry Pi Camera 
Module version 1 (Raspberry Pi Foundation, United King-
dom) was aligned over one eye piece and connected to 
the computer. Micro end stop switches were placed on 
the microscope and provided feedback to the computer 
when the stage or the focus had reached either end of its 
range of movement along each axis. A library of control 
functions for the microscope was created in Python 2.7 
(Python Software Foundation, 2017). A number of signif-
icant functions of the microscope relating to image pro-
cessing such as focus control, monolayer identification 
and cell detection, were programmed using Python and 
its OpenCV library (Open Computer Vision, www.opencv.
org).

Monolayer and cell finding algorithms

The robot was designed to scan blood smears using the 
40x objective. This objective was selected because it al-
lowed visualization of the details of individual cells. How-
ever, this meant that the robot could only address a very 
small section of the slide at a time resulting in a very slow 
scan of a blood smear if the robot had to assess every 
possible field and decide if it was a monolayer. To speed 
up this process, an algorithm to focus on the region of 
the smear containing the monolayer was designed and 
tested.

The algorithm had the robot start evaluating a blood 
smear by first looking at an empty field, determining 
the average brightness of this field and saving this as a 
reference of what an empty field should look like. The 
user would instruct the robot about the orientation of 
the smear at the start of the analysis, and then the robot 

would start from the one corner of the slide closer to the 
tapered end of the smear, and move towards the thick 
part of the smear taking a small low-resolution image 
(100x100 pixels) of each field. At this point of the scanning 
process, the microscope objective may or may not have 
been in focus. If it found a field that 1) was less bright 
than an empty field and 2) contained blue and red objects 
(which could be determined whether the microscope was 
focused or not), only then did it take the time to focus the 
image. After focusing, a second low resolution image was 
captured. The percentage of objects (cells) versus empty 
background was then calculated. If the objects covered 
50-70% of the field, the field was declared a monolayer 
and a high-resolution image was captured. If cells cov-
ered less than 50% of the field, the robot determined the 
field to be part of the feathered edge of the smear. The 
microscope would continue to scan towards the thick end 
of the smear until 3 thick fields had been encountered 
(fields with objects covering more than 70% of the field). 
It would then move to the next scanning plane. However, 
instead of returning to the edge of the slide, the robot 
returned to where it had previously found the feathered 
edge fields in the last scanning plane and start looking 
for the monolayer fields again. With this algorithm, it was 
anticipated that the microscope would not have to look 
at every field to find the monolayers and could therefore 
scan a blood film relatively quickly.

After initial testing, it was found that the process of iden-
tifying individual cells in the high-resolution monolayer 
images was too computationally intensive for the small 
Raspberry Pi, and therefore this was performed on a lap-
top with an Intel Core i7 6700HQ processor and 16Gb of 
RAM. To identify individual cells, the monolayer images 
were split into their red, green and blue channels. The 

Figure 1. The monolayer image manipulations used to find individual cells. (A) the normalized inverted green channel. 
(B) the separation of the cells and background using thresholding. (C) the identification of nuclei using thresholding. (D) 
identification of individual cells. The computer has placed a red box around every object it thinks is a blood cell. Cells 
that were touching each other were identified as independent objects by using their nuclei as a marker.



www.aavac.com.au© 77

contrast between the cells, nuclei and the background 
was highest in the green channel (Figure 1A) so this 
channel was first normalized, and the features separat-
ed by a process called thresholding (pixels are classified 
by whether they are above or below a nominated value). 
One threshold value separated the cells from the back-
ground and another separated the nuclei from the back-
ground and cytoplasm.

Once the outline of the cells and their nuclei was deter-
mined (Figures 1B and C), each cell was identified with a 
watershed algorithm (Meyer, 1992) using each nucleus as 
a marker for each cell. This allowed cells that were touch-
ing to be detected as separate cells (Figure 1D). Each cell 
was then saved as an image. 

Evaluation of robot’s ability to find the monolayer re-
gion of a blood smear

Eight smears of adult pigeon blood (Figure 3) were taken 
from a slide set made during a teaching project at the 
University of Melbourne, Faculty of Veterinary and Agri-
cultural Sciences (Animal Ethics Permit: 1513461.1). The 
smears had been stained with Diff-Quik (Fronine, River-
stone, NSW). Five of the smears were of typical thickness 
but the other three smears were considered too thick. 
Two of these thick smears had very narrow monolayers 
and one of these slides had practically no monolayer re-
gion. Both good and poor quality smears were used in 
this initial slide set to understand how the monolayer 
detection algorithm would function across a wide range 
of smear qualities. Ultimately, the goal was to see if the 
robot could be taught how to decide to accept or reject a 
smear based on its quality.

The slide scanner was asked to map where it had decided 
that a field was empty, a feathered edge, a monolayer or 
a field where the blood cells were too thick. These maps 
were then visually compared to the smears themselves. 
An operator then evaluated the monolayer field images 
produced by the robot and decided if they were in fact 
monolayer fields (where up to 50% of the cells were inde-
pendent and not touching their neighbours).

Evaluation of the algorithm to identify individual blood 
cells

The monolayer images of scanned slides were processed 
on the laptop and the folder containing the images of the 
individual cells examined by a human to look specifically 
for artefacts or erroneous cell identifications. This infor-
mation was then used to decide how to improve the ro-
bot and algorithms.

Results

The slide scanning robot could be constructed for less 
than $500.

The total cost of all the components for this project came 
to just over $410 (Table 1). The major cost of purchasing 
a microscope was avoided by salvaging a damaged micro-
scope. Had the microscope needed to be purchased, this 
would have added $700-1000 to the project. The initial 
slide scanning robot design (Figure 2) left all image pro-
cessing to the single board computer, but it was quickly 
realised that the process of identifying objects from high 
resolution images was beyond the capacity of this small-
er computer, and the images were therefore transferred 
to a laptop to perform. The smaller computer however 
was perfectly capable of controlling the movement of the 
microscope stage and processing low resolution images 
to determine whether the image was in focus. It was also 
able to process the low resolution images to identify the 
percentage of the field covered by cells and therefore 
could be used to decide if the current field was part of 
the feathered edge, a monolayer or too thick. 

Component Cost
Computer $87.95
Camera $35
Motors $69
Motor controllers $20
Miscellaneous  
(aluminium frame, switches, gears, wir-
ing,etc)

~$200

Microscope $0 (Salvaged)
Total $411.95

Table 1. Costs of individual components used in the slide 
scanning robot build

Figure 2. The slide scanning robot prototype

The microscope could find monolayer fields but also 
classified some feathered edge fields and thick fields as 
‘monolayers’

The algorithm to find the monolayers of the blood film 
enabled the robot to look in the correct section of the 
blood smear for the monolayer fields (Figure 3). How-
ever, the algorithm was not stringent enough in filtering 
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out all fields that were not monolayers as many of these 
were included alongside field images containing mono-
layers. The robot erroneously included both feathered 
edge fields and fields where more than 50% of the cells 
were touching. In better quality blood smears, the per-
centage of fields correctly identified as monolayers was 
25-33%. In the three poorer quality smears (slides with 
very narrow monolayer regions), true monolayer fields 

only comprised 5-10% of the captured fields. The robot 
was detecting fields that were too thick (more than 50% 
of cells touching) more so than feathered edge fields, 
with thick fields comprising 40-90% of the fields declared 
as monolayers. The proportion of thick fields included as 
monolayers was not related to the overall thickness of 
the smear.

Using nuclei as markers for cells allowed the computer 
to identify individual cells even when cells were touch-
ing. However, the best cell pictures were from monolay-
er fields where most cells were not touching their neigh-
bours.

The robot identified between 100,000 to 350,000 individ-
ual cell objects depending on the smear. The quality of 
the images of the cells was dependent on how well the 

robot had identified the containing field as a monolay-
er. If the cells were separate from their neighbours, clear 
images of cells could be captured (Figure 4). If cells were 
pressed close to each other, the cell identification algo-
rithm struggled to accurately separate some cells and 
would detect multiple cells as a single cell (Figure 5,Fig-
ure 6), or alternatively incorrectly allocate some of the 
cytoplasm of a neighbouring cell to the incorrect nucleus 
(Figure 5). 

Figure 3. The eight test smears (top) and corresponding smear maps generated by the slide scanner (bottom). 
Green pixels are fields the robot has detected as monolayers. Pink, blue and red pixels are feathered edge fields, 
empty fields and thick fields respectively. The numbers indicate the total number of fields identified as monolayer 
fields per slide. Smears identified with arrows were the thick smears.

Figure 4. Examples of images of cells where individual cells were not abutting neighbouring cells. The 
monocyte is showing some artefacts within its cytoplasm from the threshold differentiation of the cells from 
the background.



www.aavac.com.au© 79

When the cell identification and nuclei identification im-
ages were reviewed in the fields where the multiple cells 
were being identified as a single cell, it was apparent that 
when two nuclei were pressed close together, or when 
dark staining cytoplasm was close to a nucleus, the com-
puter was grouping the two adjacent nuclei together (Fig-
ure 6A). The error was occurring in the nuclear threshold-

ing algorithm (Figure 6C) and was likely a product of the 
smoothing occurring during the nucleus detection algo-
rithm and the moderate image resolution (5 megapixels). 
If the two nuclei were separated by a larger distance in 
pixels (ie. a higher resolution image), then it is less likely 
that the smoothing algorithm would have joined these 
nuclei together as a single object.

Figure 5. Examples of some cell artefacts when cells were abutting their neighbours. When the margins of nuclei were close to-
gether (ie where lymphocytes pressed against neighbouring RBC’s) the cell identification system classified two cells as one.

Figure 6. Example of a cell identification error where a heterophil is closely pressed against a RBC. The cell outline detection has 
grouped the touching cells together (B). Typically, the nucleus identification process (C) separates the cells, but here it has merged 
together the nuclei of the heterophil (red arrow) and two red blood cells (blue arrows).

Discussion

This study has shown that currently available consumer 
grade technology can be used to construct a basic slide 
scanning robot. The $88 single board computer was ca-
pable of driving the robot and running the focusing al-
gorithms but was not up to the central processing unit 
(CPU) intensive task of identifying individual cells from 
high resolution images. This process however was read-
ily performed on a contemporary high-end laptop. Any 
future design would most likely connect the camera di-

rectly to the laptop and leave only the basic microscope 
functions to be processed by the smaller computer. This 
would overcome another limitation of the smaller com-
puter, namely the disk writing speed. During the scanning 
of a slide, there was a noticeable delay while the small 
computer wrote the high-resolution field image to its SD 
card hard drive. On a typical laptop, this would not be 
noticeable, because typical disk writing speeds are much 
faster. Additionally, the larger memory on laptops would 
allow the image to be temporarily stored if the hard drive 
was busy writing another file at the time of saving the 
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image. 

While the current algorithm guiding how the robot 
scanned a blood smear did free it from having to evaluate 
every 40x field of the smear to find the monolayer, it was 
not stringent enough to prevent the misclassification of 
some feathered edge and slightly thicker fields as mono-
layers. This is a crucial step in developing any computer 
vision system to look at blood smears, as non-monolayer 
fields mean the computer is more likely to identify mul-
tiple cells as one cell or incorrectly assign parts of the cy-
toplasm to the wrong nucleus. Currently there are two 
areas of work being pursued to improve this algorithm. 
The first is allowing the computer to dynamically select 
threshold values to separate the cells from the back-
ground and the nuclei from the cells. Presently, this is a 
fixed value or a value based on the measurements tak-
en from an empty field at the start of each smear scan. 
It is possible to give the system the ability to determine 
these values from each field. This may also help the sys-
tem better determine the percentage of the field cov-
ered by cells if the cells are more consistently identified 
correctly. It may also help overcome some of the issues 
associated with staining variability between smears. The 
second area is narrowing the cut-off threshold percent-
ages on what the computer should accept as a monolay-
er. The present values were calculated by measuring the 
percentage of monolayer fields covered by cells on some 
test slides and the theoretical 78%* percentage of a field 
that should be covered by elliptical red cells if the cells 
were perfect arranged and just touching their neighbours 
with no overlap.

When images of good monolayer fields were captured, 
the system could produce good images of individual cells. 
However, even in the best monolayer fields, some cells 
will be touching their neighbours (e.g. avian lymphocytes 
and heterophils commonly ‘stick’ to their neighbours in 

smears) and therefore the system will have to be able 
to identify two cells touching each other. The fact that 
all avian cells are nucleated, which is often a problem in 
other automated cell counting systems, is beneficial to 
computer vision as the nuclei are high contrast markers 
which can be used to separate cells. In the current slide 
scanning robot, using the nuclei as markers for cells did 
separate most cells, but the method could benefit from 
higher resolution images to separate cells when the nu-
clei get close together. A search of currently available web 
cameras and eyepiece digital cameras has found an 8 MP 
eye piece camera for $120 and a 14 MP camera for $225 
(as of August 2017). These could be readily substituted 
into the current system to capture monolayer images and 
still maintain the relative low cost of the system.

While the current slide scanning robot is a work in prog-
ress, it does show that a low cost robotic system to aid in 
the processing of avian blood smears is feasible. Current 
work is being done to optimise the accurate recognition 
of monolayer fields. Work is also underway on testing 
algorithms to measure and eventually classify individual 
blood cells. Should a successful prototype be developed 
it could aid in clinically relevant research involving the 
evaluation of avian blood smears. 

It is possible that one day with the advance of computer 
vision and robotics that automatic slide scanners become 
routine tools in diagnostic veterinary laboratories to aid 
clinical pathologists in their evaluation of avian blood 
samples. If they are also low cost, then it is possible that 
such robots become part of in-clinic haematology/bio-
chemistry laboratories by performing preliminary analy-
sis of a smear and sending images to a remote clinical 
pathologist for expert evaluation. This could potentially 
remove the need to send slides and blood by courier to 
the laboratory. 
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