Debra McDonald

Carbohydrates

Composed of carbon, hydrogen and oxygen $(CH_2O)_n$ and joined by glycosidic bonds Glycosidic bonds differ in their linkage $-\alpha$ - or β -

• the nature of the glycosidic bond determines digestibility

Carbohydrate Classification

- a) Simple Sugars
 - Monosaccharides and disaccharides
 - Monosaccharides require no digestion prior to absorption
 - Disaccharides must be hydrolyzed to simple sugars (lactose, sucrose)
- b) Oligosaccharides
 - 1. 3 to 9 sugar units
 - 2. divided into subgroups depending on number of carbons e.g. triose (3 carbons)
- c) Polysaccharides (complex carbohydrates)
 - ► More than 9 sugar units
 - ► Starches (amylase, amylopectin, glycogen)
 - Fibre (hemicellulose, cellulose)
 - Lignin is included as fibre but is not a carbohydrate (phenolic)
 - Pectin, gums

Dietary Requirement

Readily available source of energy

CNS and erythrocytes require glucose for energy

Muscles can utilise substrates such as fatty acids for energy

Inadequate CHO – amino acids (glucogenic amino acids via the gluconeogenic pathway) are shunted away from growth and production to be used for glucose synthesis

Functions of Dietary Carbohydrates

- a) Energy
 - Energy is provided in the form of ATP from glycolysis and the TCA
- b) Heat Production
 - Oxidation of glucose releases free energy that dissipates as heat
- c) Precursors of Other Nutrients
 - Ascorbic acid is an oxidation product of an aldohexose

- d) Production of Glycogen or Fat
 - Glycogen is synthesised from an XS of simple CHOs and starches
 - Glucose converted to fatty acid during high dietary CHO intake
 - Triacylglycerols stored as large fat globules
- e) Increasing Intestinal Bulk and Water
 - Maintains proper gut motility
 - Stores a reserve of fluid for absorption during dehydration, respiration and urinary losses
- f) Maintaining Gut Health
 - End products of microbial fermentation (acetate, proprionate, butyrate) are important in maintaining colon health
 - Fibre decreases luminal pH through production of short chain fatty acids
 - Increases population of anaerobic flora
 - Antibacterial properties of SCFAs may
 - decrease pathogenic intestinal bacteria,
 - increase resistance of gut to colonisation by pathogenic bacteria
 - SCFAs facilitate absorption of Na, Cl and H₂O in colon
 - Absence of SCFAs
 - Colonic mucosa atrophy, inflammation and decreased resistance to bacterial translocation
 - SCFAs not important source energy if short intestinal tract or fast transit time

Starch Polysaccharides

Starch consists of straight chains that are linked by α -glycosidic bonds so considered to be nutritionally available

Digested by endogenous digestive enzymes

Plant starch = amylase and amylopectin, animal starch = glycogen

Nonstarch Polysaccharides

β-glycosidic bonds resist enzymatic digestion in the small intestine

- a) Cellulose
 - structural component of plant cell wall
 - β -glucans are relatives of cellulose in small amounts in grasses, larger amounts in oats and barley (associated with bran)
- b) Hemicellulose
 - Consists of α- and β- bonds
 - Close association with lignin
 - Varies taxonomically
- C) Lignin
 - Not a carbohydrate but a polyaromatic compound
 - ► Makes up structural part of plant
 - Resistant to enzymatic degradation
 - Higher proportion in older tissues
 - Can reduce digestibility of other CHOs and protein

Provides physical and chemical barrier to microbes

Chitin

Occurs as $\beta\text{--}$ linkages in cell walls of fungi and exoskeleton of invertebrates Similar in structure to cellulose

Chitinase activity in:

- starlings, raptors and variety of seabirds
- Low in chickens
- ► Absent in African grey parrots and pigeons

Soluble Fibre

Fibre classified according to solubility

Soluble = Rapidly fermentable: pectins, β -glucans, some gums

Covalently linked to lignin: comparatively soluble

Greater water-holding capacity

Insoluble = Slowly fermentable: cellulose, Hemicellulose

Fermentation

- a) Postgastric
 - Frugivores, nectarivores, florivores
 - Posterior to gastric stomach
 - Enzymatic digestion occurs prior to fermentation
 - Postgastric fermentation benefits species that feed on easily digestible foods
- b) Pregastric
 - Incompatible with flight
 - Mature leaves, stems, branches
 - Fermentation of nutrient rich foods is not efficient

Variations in fibre digestion depends on access to caeca

Sucrase

Sucrose is a disaccharide consisting of glucose and fructose Some species lack the ability to break down sucrose Berries and cherries

• predominantly monosaccharides

Apricots, nectarines, peaches, bananas, cantaloupes and mangos consist

• predominantly disaccharides

